SCHEME OF EXAMINATION AND SYLLABI

w.e.f Academic Year 2024 onwards

DOCTOR IN PHILOSOPHY Scheme and Syllabus for

- a. Physics
- b. Chemistry
- c. Mathematics

Offered by

University School of Basic & Applied Sciences at GGSIP University Campus, Dwarka

Vision of the Program

The major purpose of the PhD programme is to achieve advance knowledge in the chosen field of research so that students can take on future research challenges for the benefit of society.

Mission of the Program

The main goal of the Doctor of Philosophy (Ph.D.) programme in Physics, Chemistry, and Mathematics is to prepare students for original research and to foster autonomous and inventive thinking, which are necessary for a successful research career in science.

Programme outcomes (POs)

1. Creative and Critical Reasoning

- The students will use creative & critical thinking to generate new and imaginative ways to understand and evaluate their research topic.
- The students will be able to develop new and better ideas and methods.

2. Information and Data Gathering

- Students will be able to validate their results by doing a thorough investigation of documented literature.
- Student will be able to take decisions related to the information available.

3. Communication Skills

- As students Participate in seminars, research group meetings and competitions, all these enhance the communication skills of the students.
- workshops and seminars, peer review groups, presentation and writing resources, and tutorials are also part of this programme.
- Through conference talks, poster presentations, and teaching, you will learn to feel comfortable in front of a larger audience, engage them, and present complex ideas in a straightforward way.

4. Analytical Reasoning

- Student will be able to understand the concepts or the intentions behind what is written.
- As problem solution and its analysis is one of the part of this programme it will enhance the critical thinking skills of the student

Programme Specific Outcomes (PSOs)

- 1. **Critical Thinking:** Read, analyze, and write logical arguments to prove mathematical concepts.
- 2. Knowledge: students will be able to identify and conduct original research.
- 3. **Ethical and Responsible Research:** students will conduct research in an ethical and responsible manner
- 4. Effective Communication: students will effectively communicate their field of study.
- 5. **Research Aptitude:** Students would be able to develop their research aptitude and orientation.
- 6. **Statistics Tools:** Students would be acquainted with the statistics tools involved in the research methodology like, Mat Lab etc.

Programme Outc	Programme Outcomes (PO) to Programme Specific Outcomes (PSO) Mapping (Scale 10)									
PO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
PO1	5	7	5	7	9	9				
PO2	6	8	9	6	9	9				
PO3	4	5	9	9	9	8				
PO4	3	7	8	9	8	8				

S. No.	Paper ID	Paper Code	Paper Name	L	P	Credits
1.	904701,	RPE-701	Research and Publication Ethics	2	0	2
	905701.	142,01		NUES	Ü	_
	945701			11020		
2.	904101,	CWP-101,	Research Methodology for Science &	4	0	4
	905101.	CWC-101,	Technology			
	945101	CWM-101				
3.	904102,	CWP-102,	Introduction to MATLAB and	2	0	2
	905102.	CWC-102,	Computational Methods - Theory			
	945102	CWM-102				
4.	904103,	CWP-103,	MATLAB and Computational Method	0	2	2
	905103.	CWC-103,	- Practical			
	945103	CWM-103				
5.	904104,	CWP-104,	Advanced Characterization Techniques	4	0	4
	905104	CWC-104				
6.	904105,	CWP-105,	Synthesis of Nanomaterials &	4	0	4
	905105	CWC-105	Introduction to Nanocomposites			
7.	904106	CWP-106	Thermoluminescence dosimetry	4	0	2
8.	904107	CWP-107	Ion Beams In Material Science	4	0	4
9.	904108	CWP-108	Solar Radiation and Solar Photovoltaic	4	0	4
			Science and Engineering			
10.	904109	CWP-109	Nanostructured Thermoelectric	4	0	4
			Materials			
11.	905106	CWC-106	Heterocyclic Chemistry & Synthon	4	0	4
			Approach			
12.	905107	CWC-107	Synthesis, Isolation and Purification of	4	0	4
			Air Sensitive Compounds			
13.	905108	CWC-108	Natural Products and Instrumentation	4	0	4
14.	905109	CWC-109	Synthesis and Application of	4	0	4
			Organophosphorus Compounds			
15.	905110	CWC-110	Biological Chemistry	4	0	4
16.	945104	CWM-104	Nonlinear Dynamics	4	0	4
17.	945105	CWM-105	An introduction to fuzzy mathematical	4	0	4
			programming			
18.	945106	CWM-106	Wavelet Analysis	4	0	4
19.	945107	CWM-107	Space Dynamics	4	0	4
20.	945108	CWM-108	Lie groups and Homogeneous spaces	4	0	4
21.	945109	CWM-109	Mathematical Modelling and Ecology	4	0	4
22.	945110	CWM-110	Stochastic Process, Queuing Theory &	4	0	4
			Reliability		-	
23.	945111	CWM-111	An Introduction to Financial	4	0	4
			Mathematics		-	
24.	945112	CWM-112	Differentiable Manifolds	4	0	4

Paper CWP-101, CW CWM-101		-	EARCH METHODO ENCE & TECHNOLO		L	T/P	С
Pape 904101, 90510					4	-	4
Marking Scho	eme:						
•	Teachers	Continuous Eva	aluation: 40 marks	5			
•	Term end	l Theory Examii	nations: 60 marks				
Instructions	for paper se	tter:					
Course Objec	rtives:						
1:		the scholars for	some details asso	ciated with the	theo	retical a	nd
1.	•		the different branc				
2:	Learn meth	ods to devise a	ınd design a reseai	rch set-up			
3:	Planning th	eir research ca	reer				
4:	Conclude r	esearch in repo	rt writing and mea	ningful interpr	etatio	on.	
Course Outco	omes (CO):						
CO1:	Students w	ill learn basic c	oncepts of researc	h and importai	nce.		
CO2:	Collect data	a through expe	riments or survey	as per research	ı requ	irement	
CO3:	Develop ur research pi		n various kinds of r	esearch, objec	tives o	of doing	research,
CO4:	Write resea	arch report, res	earch proposal wit	th proper citati	ons.		
Course Outco			utcomes (PO) Ma			2: Medi	um, 3: High)
CO/P	0	PO1	PO2	PO3		F	04
CO1		3	3	3			3
CO2		2	3	2			1
CO3		3	2	3			3
CO4		3	3	2			3

Basic concepts in Scientific approach to research: Introduction of high education and importance of higher education in society, importance of information and communication technology (ICT) in higher education. Overview of research institutes related to Physics, Chemistry and Mathematics in India. Overview of Indian Scientific and funding agencies. Rules and regulations and funding agencies for Ph.D. students of attending National and international conferences/seminars/workshops/fellowships/awards etc. Overview of Indian Science Academy, Overview of research scenario in India. Definition, motivation & significance of research, types of research, research process and steps in conducting research; planning research-Problem identification and formulation; Research design.

UNIT-II

Literature survey, Report writing and Journals: Review of the publisher research in the relevant field; Reviewing literature; Report Preparation, Structure of Report, Report Writing Skills, Research Papers,; formulation of research projects proposal, ethical issues, bibliography, introduction of Mendeley software, types of reports, Types of journals, overview of Web of Science, Scopus, Open Access journals, impact factors of journal as per, citations etc., h-index, i-index etc.

UNIT-III

Plagiarism & Software tools: Definition, types of plagiarism, unintentional plagiarism, mechanisms for avoiding plagiarism. types of plagiarism, overview of Turnitin and Urkund plagiarism software, introduction of origin and Gaussian software's etc., one visit for research centre.

UNIT-IV

Invention, Innovation, IPR: Understanding of invention & innovation and its role in economic development; patents & copyrights, trademark, legislations & administrative covering IPRs in India, importance & basic knowledge of Intellectual Property Right (IPR); what can and cannot be protected.

Note: In the backdrop of the above, the assignments may be in the context of the chosen research field of the scholar, and may be designed to facilitate in identity the topic and in the process of Synopsis preparation for their respective proposed research. The work out format for the assignments must be intensively participatory; may be conducted by way of presentations and participative discussions in class

SUGGESTED REFERENCES

- 1. Research Methodology Methods and Techniquest C.R. Kothari, New Age Intl. Pub. (2004)
- 2. Business Statistics for contemporary decision making- Ken Black, John Wiley and Sons, Inc. 2010.
- 3. Research Methodology (Concept and Cases)-Deepak Chawla & Neena Sodhi, Vikas Publication House (P) Ltd. (2011)
- 4. Research Methodology- Dr. Debashis Chokarvaty, Surbhi (P) Ltd. (2010)
- 5. Research Methodology-Navin Sharma, Deep & Deep (P) Ltd. (2007)
- 6. Ranjit Kumar (2006), Research Methodology, Delhi Pearson Education
- 7. "The Role of Invention, Innovation And The Industrial Property System in Economic Development, available at the website:

www.wipo.int/cdocs/mdocs/innovation/en/.../wipo_inn_cai_97_1.doc

- 8. Joseph Gibaldi (1999 15th edition), MLA Handbook for Writers of Research Papes, New Delhi, Affiliated East West Press.
- 9. "On being A Scientist: A guide to responsible conduct in research" National Academies Press (2009)

Paper (CWP-102, CW) 102		-	troduction to MA ⁻ tational methods		L	T/P	С		
Pape					2	-	2		
904102, 905102 Marking Sche		<u> </u>							
_		ıs Evaluation:	10 marks						
		raminations: 6							
Instructions for			O IIIdi KS						
Course Object	tives:								
1:			m diverse backgro their mathematic	•			•		
2:	Introduce ar		nts in computation	ial methods wit	h MA	TLAB as	the		
3:	programmir	ng. Problems a	luctory topics and are selected from a industry/research	a list which is u	pdate	ed from t	•		
4:		imulation, mod	the logic behind so delling and designi						
Course Outco	mes (CO):								
CO1:		s are expected	to develop the fla	avour of model	ling a	nd simul	ation.		
CO2:		<u>.</u>	vledge of MATLAB						
CO3:			ge of Monte Carlo		series	s analysi	s method		
		ion to real life		•		•			
CO4:			d advanced physics	/ chemistry pr	obler	ns using	simulation.		
Course Outco	mes (CO) to P	rogramme Ou	tcomes (PO) Map	ping (Scale 1: lo	ow, 2:	: Mediur	n, 3: High)		
CO/PC	O	PO1	PO2	PO3		P	04		
CO1		3	3	2			2		
CO2		3	2	3			2		
CO3		2 3 3 3							
		2 3 3 3							

Introduction to the MATLAB programming language: Operations in MATLAB: basic mathematical operations with matrices, arrays, etc. Plotting with MATLAB: line plots, 1-D, 2-D, 3-D, mesh grid, labelling axes, legends, importing and plotting data files in MATLAB; Root finding and curve fitting.

UNIT-II

Numerical methods for solving ordinary differential equations: The Euler method, Programming in MATLAB to solve $\mathbf{1}^{\text{st}}$ order and $\mathbf{2}^{\text{nd}}$ order ODEs by Euler method, Solving ODEs using inbuilt MATLAB solvers

UNIT-III

Numerical methods for Integration: Rectangular, Trapezoidal, Simpson methods Using direct MATLAB solvers for integration, Introduction to Monte Carlo methods: random numbers, Monte Carlo Integration. Some examples from linear algebra and matrices; Fractals, polynomial fit and exponential fit.

UNIT-IV

Time Series Analysis Methods: Stationary processes, Lag plots, Auto correlation function, Power spectral density.

- 1. Rudra Pratap, Getting started with MATLAB [Oxford University Press]
- 2. Chapman, Essentials of MATLAB Programming
- 3. Balagurusamy, Numerical Methods [Tata McGraw Hill]
- 4. Tao Pang, An introduction to Computational Physics [Cambridge University Press]
- 5. Andi Klein and Alexander Godunov, Introductory Computational Physics [Cambridge University Press]
- 6. Ward Cheney and David Kincaid, Numerical Methods and Computing
- 7. Alfio Quarteroni and Fausto Saleri, Scientific Computing with MATLAB and Octave
- 8. S. R. Otto and J. P. Denier, An Introduction to Programming and Numerical Methods in MATLAB

	aper Code: 03, CWC-103	-	MATLAB and Com Methods - Practi	•	L	T/P	С
CWM-1		5,	Methous - Practi	Lai			
	Paper ID:				0	2	2
904103	, 905103, 945	5103					
Markir	ng Scheme:						
			us Evaluation: 40				
		•	xaminations: 60	marks			
Instruc	tions for pa	per setter:					
							
	Objectives		f	1	11		
1:			from diverse bac and to expand th	-		•	
		methods.	and to expand th	en mathemat	icai Ski	IIS III are	205 01
			d theory of variou	s simple probl	lems ar	nd algori	ithms
			applied to progran			_	
	the Lab.	e subscauciti, t	applied to plogial		L, 10 to	30.10	
2:		and hands on tr	aining of students	in computation	onal me	ethods v	vith
		s the programm	-	•			
3:			m a list which is up	dated from ti	me to t	ime in t	une
	with the n	eeds of industry	research and top	ical subjects.			
4:	Educate st	tudents to learn	the logic behind s	olving problen	ns relat	ted to re	eal
		•	tion, modelling an	d designing th	e algor	ithms a	nd
	translating	g them into prog	rammes				
-	Outcomes						
CO1:	Students v for progra		ng understanding	of the mathem	atical s	skills ne	eded
CO2:	They will	generate workin	g knowledge of M	ATLAB.			
CO3:			some famous and			blems u	ısing
			wise difficult to so				
CO4:	1	•	to develop the flav				tion.
	Outcomes m, 3: High)	(CO) to Program	nme Outcomes (Po	D) Mapping (S	cale 1:	low, 2:	
)/PO	PO1	PO2	PO3		PO4	ı
C	01	3	3	3		2	
C	02	2	3	3		1	
	03	3	2	2		3	
C	04	3	1	2		3	

Plotting

- (a) Eigenvalues & Eigenfunctions for Particle in a Box 1D & 2D;
- (b) Hydrogen atom wave functions

UNIT-II

ODE's - exmples-

- (a) Simple, damped and driven Harmonic Oscillator;
- (b) Van der Pol Oscillator;
- (c) Radioactive Decay;
- (d) LCR Circuit;
- (e) Schrodinger equation in 1D;
- (f) Coupled ODEs The Lorenz Equations;
- (g) Calculation of Eigen functions (π molecular orbitals using HMO theory);
- (h) Kinetics of oscillatory reactions.;

UNIT-III

Monte Carlo mthods

- (a) Simulate coin toss, die roll etc. using MATLAB's inbuilt commands;
- (b) Estimating the value of "pi" using random numbers on a circle & sphere;
- (c) Monte Carlo Integration

UNIT-IV

Time Series Analysis Methods: Stationary Processes, Lag Plots, Auto Co-relation Function, Power Spectral Density

This list may be updates/modified to included related application from time to time

Assignments may be designed relevant to the broad area of research of the research scholar.

- 1. Rudra Pratap: Getting started with MATLAB [Oxford University Press]
- 2. Chapman: Essentials of MATLAB Programming
- 3. Tao Pang: An introduction to Computational Physics [Cambridge University Press]
- 4. Andi Klein and Alexander Godunov: Introductory Computational Physics [Cambridge University Press]
- 5. Ward Cheney and David Kincaid: Numerical Methods and Computing
- 6. Alfio Quarteroni and Fausto Saleri: Scientific Computing with MATLAB and Octave
- 7. S.R. Otto and J.P Denier An Introduction to Programming and Numerical Methods in MATLAB.

	Paper Code:	Paper	: Advanced Charac	terization	L	T/P	С
CW	P-104, CWC-104		Techniques				
	D: 904104, 905104				4	-	4
Markin	g Scheme:						
	 Teachers Co 	ntinuous	Evaluation: 40 ma	rks			
		neory Exar	minations: 60 mar	ks			
	Objectives:						
1:	To understand the	basic cor	ncepts of Instrume	nts and utility	of the	XRD, SE	M
	and TEM						
2:	Students are expe				a powe	er ot	
3:	Technology to stu	-	ction of electroma		on with	matte	r with
Э.							VVICII
	respect to NMR, II		<u> </u>				
4:			eneral Principle, In				ons of
	Photoluminescend	e Spect	roscopy, Raman	Spectrosco	oy, El	ectron	Spin
	Resonance, Therm	ogravime	tric Analysis (TGA)	and Different	ial Sca	nning	
	Calorimetry (DSC)						
Course	Outcomes (CO):						
CO1:			udents are able to	acquire enou	igh kno	wledge	to
	analyse their expe						
CO2:		•	erstand and analys	•			
602			nology, chemical ar				
CO3:	The students will						•
	molecules	IVIK, IK, U	/, and will be able	to elucidate ti	ne stru	cture or	
CO4:		idents wi	II understand ins	trumentation	and a	nnlicati	on of
CO4.			roscopy, Raman				Spin
		•	• •		•		•
		_	etric Analysis (1	-	πerent	iai Sca	nning
		which the	ey can use that dur	ing their			
	research studies.						
	Outcomes (CO) to P	rogramme	e Outcomes (PO) N	/lapping (Scal	e 1: lov	v, 2:	
	n, 3: High)	01	003	003		DO 4	
		2	PO2	PO3		PO4	•
	CO1 CO2	-	3	-		-	
	CO3		-	3		<u>-</u>	
	CO4	-	-			3	
	CO+			_		J	

Structural Characterization:

(a) X-ray Diffraction

Components of X-ray diffraction-X-ray soruce; Specimen; optics; detector ;- X- ray saftey , Indexing of powder x-ray diffraction and sample prepartion methods;

(b) **Determination**: Crystallite Size; Phase Determination, Crystal Structure (Cubic only), lattice paratmeter, qualitative analysis of powder mixure, Breif introcduyction of Retveild analysis.

UNIT-II

Electron Diffraction:

- (a) Electron Microscopy Methods- Electron beam specimen interations, Scanning electron microscopy(SEM), Chemical Analysis, Transimission electron microscopy(TEM), energy disperseive X-ray spectroscopy analysis, Specimen Prepartion for SEM analysis and Specimen Prepartion for TEM analysis; High Resulation Transimission Electron Microscopy.
- **(b) Transport Characterization:** Electrical Conductivity, Seebeck Coefficient, Thermal Conductivity, Techniques for measurements of Hall effect (Over View only), AC and DC conductivity.

UNIT-III

Spectroscopic Techniques: Nuclear Magnetic Resonance (NMR) Spectroscopy, Infra Red (IR)Spectroscopy-Fourier Transform Infrared Spectroscopy (FTIR) and Attenuated Total Reflection Spectroscopy (ATR), Ultra Violet-Visible (UV-Vis) Spectroscopy.

UNIT-IV

General Principle, Instrumentation and Applications of Photoluminescence Spectroscopy, Raman Spectroscopy, Electron Spin Resonance, Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)

- 1. Element of X-ray diffraction, BD Cullity and SR Stock, 2001, Pearson.
- 2. Electron Microscopy: Principles and Fundamentals, Edited by : <u>S. Amelinckx, Dirk vanDyck, Gustaaf van Tendeloo, J. Van Landuyt, 2008, John Wiley & Sons.</u>
- 3. An Introduction to Surface Analysis, <u>John F. Watts</u>, <u>John Wolstenholme</u>, 2003, Wiley.
- 4. ASM Hand Book Volume 10- Material Characterization, Edited by: Thomas J. Bruno, Ryan Deacon, Jeffrey A. Jansen, Neal Magdefrau, Erik Mueller, George F. Vander Voort, Dehua Yang, 2019, ASM International.
- 5. Organic Spectroscopy, William Kemp, 1991, Palgrave, London.
- **6.** Thermal Analysis, Wendlandt, Wesley William, 1986, Wiley-Interscience. New York.

	er Code: 05, CWC-103		nthesis of Nanom		L	T/P	С
Pa 904105,	per ID: 905105				4	-	4
Markin	g Scheme:						
	• Te	achers Continuo	us Evaluation: 40	marks			
	• Te	rm end Theory E	xaminations: 60 n	narks			
Course	Objectives	:					
1:	To enable	students to lear	n about Chemical	precipitation a	and co-	precipit	ation
2:	To enable	students to kno	w the basics of So	l-gel & Microe	mulsio	ns synth	esis
3:	To enable preparation		competent in biolo	gical methods	of nan	oparticl	е
4:			erstand the variou	ıs categories o	f Nano	compos	ites
Course	Outcomes	(CO):					
CO1:	synthesis	which helps in u	er knowledge of vanthes tilizing the synthes h desired properti	sis technique n		•	
CO2:		n to apply thes	e chemical method se techniques wh	· ·	-		
CO3:			e biological metho nthesize nanopart			nthesis v	which
CO4:		nts will able to d characteristics	istinguish the type	es, Nanocompo	osites a	ınd theii	r
	Outcomes n, 3: High)	(CO) to Program	nme Outcomes (PC	O) Mapping (S	cale 1:	low, 2:	
со	/PO	PO1	PO2	PO3		PO4	,
C	01	3	3	2	2		
C	O2 :	2	2	3	3		
C	03	3	3	2	2		
C	04	3	3	3	3		

Unit I:

Chemical precipitation and co-precipitation: Theory & Thermodynamics, nucleation, growth, Oswald Ripening and Stabilization. Microwave assisted co-precipitation; Sonochemical assisted co-precipitation. Metal nanocrystals by reduction; Precipitation of Metals by Electrochemical reduction; Precipitation of Metals by Radiation-assisted reduction; Precipitation of Metals by Thermolysis routes.

Unit II:

Sol-gel & Microemulsions synthesis: Sol-gel synthesis: Fundamental steps, Chemistry of Metal Alkoxides, Chemistry of aqueous metal cations, Xerogels & Aerogels, Gel sintering.

Microemulsions or reverse micelles: Fundamentals, Surfactants & their selection, Phase equilibria, Reaction Dynamics. Synthesis in supercritical fluids & Solvothermal synthesis.

Unit III:

Biological Methods of Synthesis: Use of bacteria, fungi, Actinomycetes, Viruses, Plants for nanoparticle synthesis.

Unit IV:

Various categories of Nanocomposites: Coupled nanocomposites, Capped nanocomposites, Core-Shell structured nanocomposites, Super hard Nanocomposites.

- 1. Chemistry of nanomaterials: Synthesis, properties and applications, CNR Rao, H.C. mult. Achim Müller, A. K. Cheetham, **2004**, Wiley-VCH Verlag GmbH & Co. KGaA,
- 2. Nano chemistry: A Chemical Approach to Nanomaterials, Geoffrey A Ozin, André Arsenault, Ludovico. Cademartiri, **2008**, Royal Society of Chemistry, Cambridge UK,
- 3. Nanobiotechnology: Concepts, Applications and Perspectives, Editors: C.M. Niemeyer, C.A. Mirkin, **2004**, Wiley-VCH
- 4. Introduction to Nanotechnology, R. Singh, S. M. Gupta, 2016, Oxford University Press
- 5. Nanocomposite Science and Technology, Pulickel M. Ajayan, Linda S. Schadler, Paul V. Braun, **2003,** Wiley, New York
- 6. The search for novel, super hard materials (Review Article), Stan Vepřek_1999, Journal of Vacuum Science & Technology A 17, 2401 (1999); https://doi.org/10.1116/1.581977.

Paper	Code: CWP-106	Paper: T	hermoluminescence	dosimetry	L	T/P	С		
Pap	er ID: 904106				4	-	4		
Marki	ng Scheme:								
•	Teachers Cont	inuous Evaluati	on: 40 marks						
•	Term end Theo	ory Examination	ns: 60 marks						
Course	Objectives:								
1:	To give knowled	lge about vario	us radiation sources	their measureme	nts and	radiation	1		
	safety								
2:	To understand concepts of TL dosimeters								
3:	To be aware of	be aware of recent research trends in TLD							
4:	To understand p	To understand preparation methods of TL dosimeters and their applications							
	-	-							
Course	Outcomes (CO)):							
CO1:	Gained the know	wledge of radia	tions, doses and safe	ety limits					
CO2:	Understood TLD	and its dosime	eter evaluations tech	niques.					
CO3:	Studied about T	L dosimetry and	d their applications						
CO4:	Have sufficient l	knowledge of re	ecent research trend	s in TLD.					
Course	Outcomes (CO) to	Programme O	utcomes (PO) Mappir	ng (Scale 1: low, 2:	Mediun	ո, 3։ High	1)		
C	O/PO	PO1	PO2	PO3		PO4			
(CO1	2	3			3			
(CO2	2	3	1		3			
(CO3	2	3	3		3			
(CO4	3	3	3		2			

Definition of radiation and its types, Ionizing and non ionizing radiation, Quantities and units, Interaction of radiation with matter, Sources of radiation: Natural and Artificial. Radioactive sources: beta, alpha, gamma and X ray sources, Measurement of radiation: different type of dosimeters, Occupational Exposure Limits, Dose limits to Public, General safety of radiation sources, Radiation Measuring instruments, Radiation Hazard evaluation and control, Regulatory requirements: National Regulatory Body, safety standards.

UNIT-II

Luminescence mechanism, Principle of Thermoluminescence, Application of Thermoluminescence: Personnel monitoring, environmental monitoring, radio diagnostics or radiotherapy, food processing, Models of Thermoluminescence: traps and recombination centres, simple model; alternate model; Thermoluminescence glow curve analysis: Evaluate of TL parameters E and s, Peak shape method, curve fitting, computerised glow curve deconvolution. TL properties: glow curve structure, dose response, energy response, annealing procedures, fading, reproducibility.

UNIT-III

Various type of TLD phosphor; tissue equivalent and non tissue equivalent phosphor. Method of preparation, melting method, co precipitation method and crystal growth method: edge defined film fed growth technique: Advantage of EFG technique for preparing phosphor in the form of sheet: Growth procedure.

UNIT-IV

Applicability for TL dosimeter for personnel monitoring and Radiotherapy Treatment; Patient skin dose distribution; treatment planning and quality assurance in radiation therapy, Environmental monitoring, recent research trends in TLD dosimetry

Suggested Readings and References

- 1. The physics of radiation therapy, Faiz M. Khan, 4th edition (2010), Lippincott, Williams and Wilkins, USA.
- 2. Fundamental of X-ray and Radium Physics Joseph Selman, (1970). Charles C. Thomas Publisher.
- 3. Basic Medical Radiation Physics Stanton, (1969), New York: Appleton-Century-Crofts.
- 4. Radiation Detection and Measurement, 3rd Edition, Wiley, New York (2000), G.T. Knoll.
- 5. Introduction to Radiological Physics and Radiation Dosimetry, Wiley, New York (1986), F.H. Attix.
- 6. Thermoluminescence of solid, Cambridge Solid State Science Series, (1988), S.W.S. McKeever.

Paper	Code: CWP-107	Paper: le	on Beams In Mate	rial Science	L	T/P	С	
	er ID: 904107	· apoir is	J. Jeans		4	-	4	
-	g Scheme:							
	_	rs Continuc	us Evaluation: 40	marks				
	• Term e	nd Theory E	examinations: 60 i	marks				
Course	Objectives:	<u> </u>						
1:	Ion beam tech	nology is cu	rrently one of the	most modern	topics	in nucle	ar	
	science and ted	chnology.						
2:	The main object	ctive of ion	beam in materials	science cours	e is to	train		
			ator technology ir			-		
		and differer	nt theoretical desig	gn and usage o	of vario	us		
	accelerators.							
3:			r materials, mater	ial modificatio	ns and	create		
	nanostructures	& applicat	ions.					
4.	The serves for	ط ماانیام منامی						
4:	The course focus is skills based.							
Course	Outcomes (CO)	•						
CO1:			or with the basic to	ools required t	o work	with		
001.			eam optics, vacuur	•			on	
			ilable around the v					
CO2:	Develop new p	rocesses fo	r nanofabrication	by ion beam.				
				•				
CO3:	Future Techno	ology & Ap	plications like: (a	a) Free Elect	ron La	ser (FEL	_) (b)	
	Superconducti	ng Linacs&	Cyclotrons.					
CO4:	•		rse, the student w	-	_			
	•		accelerator techno					
			echnology, nuclear	technology a	nd acc	elerator-	-	
C	based research		•	0) 84				
		to Program	nme Outcomes (Po	וע iviapping (S	cale 1:	iow, 2:		
	m, 3: High) //PO	PO1	PO2	PO3		PO4		
	01	3	3	3		3		
	02	3	3	2		3		
	03	3	3	3		2		
	04	2	3	1		3		
			<u> </u>					

Unit I:

Accelerators: Accelerators, Types of accelerators, [Introduction of Electrostatic accelerators—Cockcroft-Walton, Van—de—Graf, linear accelerator] and compression & applications, Pelletron, Cyclotron, Synchrotron, Nuclear energy and uses, status of accelerators in India and Abroad.

Unit II:

Vacuum: Basic principles of vacuum technology and brief overview, Elements of a vacuum system, Vacuum coating system and their importance, Types of vacuum pumps and applications, Rotary pump, Diffusion pump, Pirani gauge, Thermocouple gauge, Ultra high vacuum technology, Leak detection techniques.

UNIT III:

Ion interaction with matter: Ion stopping, energy losses, effective charge of moving ion, high energy and low energy losses, ion range and distribution, straggling,

Nano-structuring by Ion beams: Synthesis of nanostructured materials under electronic excitation and nuclear energy loss, nanostructures within ion track and at the surface by self-organization, nano-pattering: ripple formation, nano-dot formation.

Unit IV

Ion beam-based techniques for material analysis and applications: Trace element analysis, Various methods, Rutherford backscattering spectrometry (RBS): Principle, instrumentation, working and applications, Elastic Recoil Detection Analysis (ERDA): Principle, instrumentation, working and applications, Nuclear reaction analysis (NRA): Principle, instrumentation, working and applications, Particle induced X—ray emission (PIXE): Principle, instrumentation, working and applications, Accelerator mass spectrometry (AMS): Principle, instrumentation, working and applications, Medical applications of accelerators. [12]

Reference Books:

- 1. Materials Science with ion beam, Harry Bernas, Springer 2010
- 2. Accelerator Based Research in Basic and Applied Sciences, 2002, Amit Roy and D.
- K. Avasthi, Phoenix Publishers.
- 3. Introduction to High Energy Physics (4th edition) by D. H. Perkins 2000.
- 4. Swift Heavy Ions for Materials Engineering and Nano structuring, Springer, D. K. Avasthi. and G.K. Mehta,
- 5. Basic ideas and concepts in Nuclear Physics: An introductory approach by K Heyde, third edition, IOP Publication, 1999.
- 6. Introductory Nuclear Physics by K. S. Krane, Wiley-India Publication, 2008.
- 7. Nuclear Physics by R. Prasad, Pearson, 2014.
- 8. R.R. Roy and B. P. Nigam: Nuclear Physics, Theory and Experiment (John-Wiley and Sons, INC.)

Par	per Code:	Paper:	Solar radiation an	d Solar	L	T/P	С		
	WP-108	-	aic Science and Er						
Pa	aper ID:				4	-	4		
9	904108								
Markir	ng Scheme:								
	• Tea	achers Continuc	us Evaluation: 40	marks					
		m end Theory E	xaminations: 60	marks					
Course	Objectives:								
1:			t the status, recer		uture s	scope of	solar		
	+		r photovoltaic in բ	particular.					
2:			hotovoltaic system						
3:			recent research trends and emerging technologies in						
	Photovolta								
4:	To underst	and concepts o	f solar radiation						
	Outcomes	•							
CO1:	Explain the	e existing solar e	energy potential.						
CO2:	Explain the	operation and	performance of so	olar Photovolt	aic syst	tem			
CO3:	Perform a	solar resour	ce assessment o	f a potential	site	and de	velop		
	understan	ding on the Pho	tovoltaic plant des	sign.					
CO4:		_	of recent trends	and emerging	techno	ologies ir	1		
	solar Photo								
		(CO) to Program	Outcomes (PO) I	Mapping (Scal	e 1: lov	ν, 2:			
	m, 3: High)			T	ı				
	D/PO	PO1	PO2	PO3		PO4			
	01	1	3	3		3			
	02	3	3	2		2			
	03	3	3	2		3			
C	04	1	3	3		3			

Unit I:

Introduction: Current energy scenario and importance of renewable energy in general and solar energy in particular, Solar radiation, usefulness of radiation data for solar engineers, designers and architects. Sun-Earth relations, Thermal radiation, Extra-terrestrial Solar Radiation, Interaction of Solar radiation with atmosphere, various scattering, absorption and reflection processes, Terrestrial Solar Radiation, radiation data from satellite, Solar radiation measuring instruments: Pyranometer, Pyrheliometer, sun shine recorder etc., hourly global, beam and diffuse radiation, estimation of global radiation on horizontal surface, importance of radiation data for modelling of devices and simulations

Unit II:

Status, Trends, Challenges and the future scope of Solar photovoltaics: What is photovoltaics, history, goals of todays PV research, global trends, motivation for photovoltaic application and development, crystalline Silicon technology, progress and challenges, Physics of solar cell: fundamental properties of semiconductors, pn junction diode electrostatics, solar cell fundamentals, spectral response, theoretical limits of photovoltaic conversion, V-I characteristics of solar cell, properties of efficient solar cells PV cell, module, Array, Energy storage, study of associated system electronic components in brief like charge controller, battery, inverter, wiring, stand etc.

Unit III:

PV System Designing: Designing, modelling and simulation of standalone PV Systems, Designing, modelling and simulation of PV, hybrid systems, utility interactive system.

Unit IV:

Emerging PV Technologies and their future: Dye sensitized solar cell, other variants of Dye Sensitized solar cells, Perovskite solar cell, organic solar cell and other emerging technologies in solar photovoltaics.

- **1.** Solar Energy: Fundamentals, design, Modelling and Applications, G.N. Tiwari,2002, Narosa Publishing house
- **2.** Understanding renewable energy systems, Volker Quaschning, 2006, Replika Press Pvt. Ltd., India.
- 3. Alternative Energy, Vol 1-3, Neil Schlager and Jayne weisblatt, 2006
- **4.** Thompson Gale Generating electricity from the sun, Fred C Treble,1991, Pergramon Press
- **5.** Solar Cells: Operating principles, technology and system Applications, Martin A. Green, 1982, Prentice Hall
- 6. Physics of solar cells, Peter Wurfel, 2016, Wiley VCH Verlag GmbH & Co. KGaA
- 7. Terrestrial solar photovoltaics, Tapan Bhattacharya, 1998, Narosa Publishing House

-	er Code: WP-109	Paper: Nar	nostructured Ther Materials	moelectric	L	T/P	С
	per ID:		iviateriais		4	_	4
	004109				_		-
Markin	g Scheme:						
•	Teachers Co	ontinuous Eval	uation: 40 marks				
•	Term end Th	neory Examinat	tions: 60 marks				
Course	Objectives:						
1:	Nanos I	Nanostructure	d Thermoelectric	Materials is o	urrent	ly one o	of the
	hottest top	oics in the en	ergy sector, phys	sics & engine	ering,	expect	ed to
	revolutioniz	e the future de	emand for renewa	ble energy.			
2:	This	s course dema	ands an experim	ental science	and v	vill intro	oduce
	students to	this exciting	g new field and	cover its n	nain id	deas, cu	ırrent
		nts, and future				-	
		,					
3:	То	introduce stud	dents to the basic	concepts in	transpo	ort prop	erties
	and to fami	iliarize them w	ith its unique dev	elopment of	good tl	nermoel	ectric
	materials a	nd applications	s which form a ba	ise for both w	orking	in upco	ming
	companies	as well as resea	arch groups in top	IT companies	and ac	ademia	
4:	To educate	students with	the basics of elect	ronic, phonon	transp	ort, the	
	figure of me	erit, and therm	oelectric device co	oncepts, nano	science	concep	ts
			ectric properties.				
			way to improve the		ric pro	perties a	and
	mechanism	to fabricate th	e thermoelectric	device.			
Course	Outcomes (0	CO):					
CO1:		-	position to bette	er understand	the ir	mpact o	f this
			ready for the new			•	
	sector.		ready for the field		8 «Þ	נווכ כ	
	sector.						
CO2:	The student	t will he familia	ır with the basic kı	nowledge regi	iired to) develo	n a
002.		nt thermoelect		io wicage requ	Cu ((, acve10	۲ u
CO3:			rse, the student w	ill be ready fo	r assigr	nments	and
			energy sector.		0.		=
CO4:			o start their start-	ups to develo	p econ	omically	,
			rmoelectric device	•			
	Outcomes (0 m, 3: High)	CO) to Program	nme Outcomes (Po	O) Mapping (S	cale 1:	low, 2:	
	/PO	PO1	PO2	PO3		PO4	,
	01	3	2	3		2	
-	02	1	3	2		1	
	03	3	3	2		3	
С	04	2	3	2		3	

Electronic structure of material:

Statistical equilibrium of free electrons: density of states for bulk and low dimensional system, distributions: Maxwell Boltzmann, Fermi Dirac, carries concentration, impurity semiconductors, quantum wells, quantum wires and quantum dots.

UNIT-II

Static properties:

Specific heat of materials, thermionic emission

Transport properties of materials:

Boltzmann transport equation, particle diffusion, electrical and electronic thermal conductivity, Isothermal Hall effect Phonons, Lattice thermal conductivity Transport properties of quantum wells, quantum wires and nanocomposites.

UNIT-III

Thermo Electric Materials:

See beck coefficient, Peltier effect, Figure of merit, Selection of the material for TEM, Comparability parameter, Efficiency, Different types of TEM and recent development in low dimensional TEM, doping, alloying and size effects and its applications.

UNIT-IV

Thermoelectric module and device:

Introduction, Single mode and multi-mode devices, Segment thermoelectric model, Modelling and optimization of Segmented Thermoelectric Uncouples, Optimum Conversion Efficiency

- 1. Statistical physics: Patheria (Butterworth-Heinemann, Oxford, 1972)
- 2. Statistical physics: K.Huang(Wiley Eastern, New Delhi, 1975)
- 3. B.K.Aggarwal & Melvin Eisner: Statistical physics (Wiley Eastern, New Delhi)
- 4. CRC handbook of Thermoelectrics, Ed. CR Rowe, 1955

	oer Code: WC-106	-	rocyclic Chemistry	& Synthon	L	T/P	С		
_		Appro	acn						
	aper ID:				4	-	4		
	905106								
Markir	ng Scheme:	_							
	•	Te	achers Continuous	Evaluation: 4	10 mar	'ks			
	•	Te	rm end Theory Exa	minations: 6	0 mark	(S			
Course	Objectives	1							
1:	It is aimed	to skill students	s in designing the s	ynthesis of im	portar	nt organ	ic		
	molecules								
2:	Learning o	f synthesis and	utility of various he	eterocyclic cor	npoun	ıds			
3:	Learning o	f application of	plication of organic reagents in a reaction						
4:	To acquire	knowledge on	catalytic reactions						
Course	Outcomes	(CO):							
CO1:	Students s	hall able to desi	gn the synthesis of	new organic	molec	ules			
CO2:	Gained kn	owledge on the	synthesis of variou	s heterocycle	s and t	to use fu	ırther		
	for design	ing new derivati	ves						
CO3:	Utility of o	rganic reagents	in a reaction and c	an apply then	n in th	eir resea	arch		
	project								
CO4:	Learnt hov	v to use catalyst	in a reaction						
Course			nme Outcomes (PC) Mapping (S	cale 1:	low, 2:			
Mediu	m, 3: High)		•						
CC)/PO	PO1	PO2	PO3		PO4	•		
C	01	3	2	2		3			
C	02	3	2	2		3			
C	03	3	2	2		3			
C	04	3	3	2		2			

Chemistry of Heterocyclic Compounds:

Introduction to Heterocycles: Nomenclature (Hantzsch Widman System), spectral characteristics, reactivity and aromaticity of monocyclic, fused and bridged heterocycles. Five and six-membered heterocycles with two or more hetero atoms: Synthesis, reactivity, aromatic character and importance of the following heterocycles: Pyrazole, Imidazole, Oxazole, Thiazole, Pyrimidine, Pyrazine, Oxazine, Thiazine, Triazoles, Oxadiazoles, Thiadiazoles, Triazoles.

Synthesis and reactivity of Benzofuran, Benzothiophene, Benzopyrroles, Indole, Quinoline and Isoquinoline.

UNIT-II

Synthon Approach: Definition of terms-disconnection, synthon, functional group interconversion(FGI), Basic rules in Disconnection, Designing Organic Synthesis: rearrangement in synthesis, use of ketene in synthesis, aromatic heterocycles five member rings and synthesis of five and six member rings.

Use of synthon approach in the synthesis of following compounds: Terfenadine, Ibuprofen, Propanolol, Fentanyl, Ciprofloxacin, Diclofenac.

UNIT-III

Organometallic and Non-organometallic Reagents:

Preparation, properties and applications of the following in organic synthesis with mechanistic details: Lithium aluminium hydride, Lithium Diisopropylamide, Trimethylsilyl iodide, Diazomethane, Polyphosphoric acid, Dicyclohexylcarbodiimide, Lead Tetra-acetate, Osmium tetraoxide.

Organocopper Reagents, Organochromium Reagents, Organosilicon Reagents and Organo-nonmetallic Reagents.

UNIT-IV

Industrial Oxidizing and Reducing Agents: Reactions and mechanism of industrial Oxidizing agents: $K_2Cr_2O_7$ and H_2O_2 .

Reducing agents: Na₂SO₃ and Na₂S₂O₃.

Industrial Metals: Catalytic Reactions (hydrogenation, Zeigler Natta process, Wacker process and Fischer Tropsch process) of Raney nickel, Pd, Cr, V, Pt and Ti.

- 1. Organometallics in J.M. Swan and D. organic synthesis C. Black, 1974, Champman and Hall
- 2. Designing of S. Warren organic synthesis, 1991, Wiley
- 3. Advanced Organic Jerry March chemistry, 6th edition, 2006, Wiley Eastern 4th edition
- 4. Some Modern W. Carruthers Methods of Organic Synthesis, 4th edition, 2005, Cambridge University Press
- 5. Advanced Organic Chemistry, Part B, F. A Carey and R.J. Sundeberg, 5th edition (2007) Springer

		1								
-	er Code:	•	Synthesis, Isolatio		L	T/P	С			
	WC-107	Purification	of Air Sensitive C	ompounds						
	aper ID: 905107				4	-	4			
Markir	ng Scheme:									
	• Te	eachers Continuo	us Evaluation: 40	marks						
	• Te	erm end Theory E	Examinations: 60 i	marks						
Course	Objectives	:								
1:	A researc	h student will lea	ırn about various o	drying reagent	s, diffe	rent				
	methods	of distillation / p	urification require	d for various t	ypes o	forgani	С			
	solvents u	ınder normal cor	nditions and under	vacuum using	nomo	graph				
2:	Students	will acquire the k	nowledge of type	s of glass ware	es/ app	aratus t	o be			
	used like	Schlenk Apparatı	us- round bottom	Schlenk flask,	Schlen	k tubes,				
		• •	nd the important p							
	_	y environment.	·			· ·				
3:	Students	Students will learn about the synthesis and purification of air sensitive								
	compoun	ds.								
4:	Students	will learn how to	isolate the air ser	sitive compou	ınds fro	m their				
	mixture w	ith the help of lo	ow temperature co	olumn chroma	tograp	hy.				
		•								
Course	Outcomes	(CO):								
CO1:	Students	will hone their sk	ills independently	to distil vario	us type	s of solv	vents			
			ts and particularly							
		, , ,	er vacuum with th	_	_					
CO2:			vith sophisticated	•						
		-	Schlenk flask, Schl	-			ve			
	Box and t	heir handling dui	ring the synthesis.		-					
CO3:	Students	will be able to ca	rry out independe	ntly the synth	esis of	air sens	itive			
	compoun	ds and their puri	fication by recryst	allization at ro	om ter	nperatu	re /			
	low temp	erature under in	ert atmosphere, w	ashing/ remo	val of i	npuritie	es			
	from unst	able compounds	at low temperatu	ire.						
CO4:	Students	will be able to iso	olate air sensitive o	compounds fro	om the	ir mixtu	re by			
	applying t	heir knowledge	of column chroma	tography part	icularly	by low	,			
	temperat	ure column chroi	matography							
Course	Outcomes	(CO) to Program	nme Outcomes (Po	O) Mapping (S	cale 1:	low, 2:				
Mediu	m, 3: High)									
CC)/PO	PO1	PO2	PO3		PO4				
C	01	3	-	-		-				
C	02	-	3	-		-				
						-				
C	03	-	-	3		-				

Unit I

<u>Purification:</u> Distillation of organic solvents and distillation under vacuum and use of nomograph (manometer / vacuum pump and Schlenk Apparatus) to establish b. p. of a solvent/ compound at various pressures, common drying agents, design of apparatus for distillation under inert atmosphere of dry nitrogen or argon gas.

Unit II

<u>Schlenk Techniques:</u> Synthesis of air sensitive compounds and manipulation of air sensitive reactions. Designs of Schlenk Apparatus- round bottom Schlenk flask, Schlenk tubes, Young tubes.

Unit III

<u>Purification of air sensitive compounds</u>: Recrystallization at room temperature / low temperature under inert atmosphere, washing/ removal of impurities from unstable compounds at low temperature.

Unit IV

<u>Chromatography Techniques:</u> column chromatography and low temperature column chromatography, design of column for low temperature chromatography, types of silica gel and their characteristics and types of alumina.

Suggested Readings and References

- 1. A laboratory handbook of chromatography Synthesis, E.Heftmann, 1975, New York
- 2. Organic Experiments, K. L. Williamson, 2007, New York
- 3. Organometallic Reagents in Synthesis, R. Jenkins, 1992, Oxford

•	per Code:	Papei	r: Natural Product	s and	L	T/P	С
	WC-108		Instrumentation				
	aper ID:				4	-	4
	905108						
Markir	ng Scheme:						
	• Te	achers Continuo	ous Evaluation: 40	marks			
	• Te	rm end Theory E	examinations: 60	marks			
Course	Objectives	:					
1:	To learn b	asic knowledge	of isolation and ρι	urification of n	atural	molecul	es
2:	To study o	ompounds prod	uced by plants tha	at have biologi	cal act	ivity	
3:	To learn io technique		natural molecules	with the help	of spec	troscop	ic
4:	To enable	students to com	npare natural mole	ecule with syn	thetic r	molecule	9
	Outcomes	<u> </u>					
CO1:	It offers a	n excellent strate	egy towards ident	ifying novel na	itural p	roducts	
CO2:	The stude	nts will be able t	o discover bioacti	ve molecules v	with sp	ecial	
	emphasis	on developing 'I	nvestigative New	Drugs' (INDs)			
CO3:	The stude	nts will be able t	o understand spe	ctroscopic tec	hnique	s [NMR,	IR,
	UV, Mass	etc] thoroughly					
CO4:	The stude	nts will be able t	o modify natural p	oroduct as per	the ne	ed of th	ie
	project.			·			
Course		(CO) to Program	nme Outcomes (Po	O) Mapping (S	cale 1:	low, 2:	
	m, 3: High)		•			•	
	D/PO	PO1	PO2	PO3		PO4	
(01	3	-	-		-	
(02	-	3	-		-	
(03	-	-	3		-	
(04	-	-	-		3	

Unit-I

Literature survey and identification of natural products

Unit-II

Characterization of Natural Products: Natural Product Chemistry and its importance in our life, Activity guided fractionation, isolation and characterization of leads from natural products spectroscopy.

Unit-III

Chromatography: Gas Chromatography and High Performance Liquid Chromatography- instrumentation, detectors and applications, TLC, Column chromatography, Gel filtration, Ion Exchange chromatography and Affinity chromatography and Electro- chromatography.

Unit-IV

Instrumentation: Nuclear Magnetic Resonance [NMR (¹H, ¹³C)], Infra red (IR) spectroscopy, Ulta Violet (UV) spectroscopy, Mass. Spectrometry, Electrophoresis.

Text/Reference Book:

- 1. Organic Spectroscopy by William Kemp (1991)
- 2. **Spectrometric Identification of Organic Compounds** by Robert M. Silverstein, Francis X. Webster, and David Kiemle
- 3. Quantitative Chemical Analysis by Daniel C. Harris
- 4. Isolation, identification and characterization of allelochemical/natural products by Diego A. Sampietro, Cesar A. N. Catalan, Mark A. Vattuone (2009)
- 5. Introduction to organic Spectroscopy by Laurence M. Harwood (1996)

Pan	er Code:	Paner: Sv	nthesis and Appli	cation of	L	T/P	С		
-	VC-109		phosphorus Com		-	.,.			
Paper ID:			<u> </u>		4	-	4		
	05109								
Markin	g Scheme:	•							
	• Tea	achers Continuo	ous Evaluation: 40	marks					
	• Ter	m end Theory E	examinations: 60	marks					
Course	Objectives:								
1:	Students will learn about various organometallic reagents, their properties								
	and applica	ations/ importa	nce in synthesis.						
2:	Students w	vill learn chemis	try of Phosphorus	monovalent o	ompo	unds			
	(phosphini	denes) and thei	r stabilization by o	complexation v	with or	ganome	tallic		
	reagents.								
3:			emistry of variety of		-				
		•	Phosphaalkenes,		es, Pho	sphapin	es		
_	•		s, Arbuzov reaction						
4:		-	with chemistry of p	•	_	-	O, S,		
			, Wittig reactions,	phosphonates	s and t	heir			
	application	1.							
Carriag	Outcome	(60).							
COURSE CO1:	Outcomes (•	nthocico various o	rganomotallic	roago	nts for			
CO1.			nthesise various o of different orgar						
CO2:			nthesise of phosp						
CO2.			nd by trapping the			•			
			reactions with C-X		_	-			
CO3:							ke		
		Students will be able to synthesise a variety of phosphorus compounds like Phosphines/ Phosphanes, Phosphaalkenes, Phosphaalkynes, Phosphapines							
	Phosphazenes, Phosphites.								
CO4:	-	•	idise a variety of	phosphorus co	ompou	nds to t	neir		
	chalcogeni	des (P(V) comp	ounds) with the he	elp of suitable	oxidis	ing ager	ıts		
	_		de, H ₂ O ₂ , urea- H ₂						
Course	Outcomes ((CO) to Program	nme Outcomes (P	O) Mapping (S	cale 1	low, 2:			
	m, 3: High)		,	.					
-	/PO	PO1	PO2	PO3		PO4			
	01	3	-	-		-			
	02	-	3	-		-			
	03	-	-	3		-			
С	04	-	-	-		3			

Unit I

<u>Organometallic Reagents in Synthesis:</u> Metallated saturated hydrocarbons, metallated alkenes, metallated alkynes, metallated aromatic compounds, metallated heterocyclic compounds and heteroatom stablised organometallic reagents.

Unit II

<u>Chemistry of Phosphorus (I) Compounds:</u> Phosphinidenes, synthesis and stabilization of phosphinidenes, singlet and triplet phosphinidenes, insertion reactions of phosphinidenes, reagents to generate phosphinidenes.

Unit III

<u>Chemistry of Phosphorus (III) Compounds:</u> Synthesis and stabilization Phosphines/ Phosphanes, Phosphaalkenes, Phosphaalkynes, Phosphapines Phosphazenes, Phosphites, Arbuzov reactions.

Unit IV

<u>Chemistry of Phosphorus (V) Compounds:</u> Phosphine chalcogenides- synthesis and their application, Phosphorus ylides, Wittig reactions. Arbuzov reactions, phosphonates.

Suggested Readings and References

- 1. Organometallic Reagents in Synthesis, Paul R. Jenkins, 1992, Oxford
- 2. Phosphorus Ylides, Oleg I. Kolodiazhnyi, 1999, Wiley-VCH, Weinheim
- ${\bf 3.\ Multiple\ Bonds\ and\ Low\ Coordination\ in\ Phosphorus\ Chemistry,\ F.\ Mathey,\ Edited\ by\ M.}$

Regitz and O. J. Scherer, 1990, Georg Thiene Verlag, New York

4. Phosphorus: the Carbon Copy, K. B. Dillon, F. Mathey, and J. F. Nixon, 1998, Wiley,

Chichester

-	er Code:	Pape	r: Biological Chem	nistry	L	T/P	С		
	WC-110						4		
	aper ID: 905110				4	-	4		
	ng Scheme:								
IVIGIRII	•	chers Continue	ous Evaluation: 40	marks					
Course	Objectives:	in end Theory i	Examinations: 60	IIdiKS					
1:		to knowledge	and understanding	of the princip	nlac th	at gover	n the		
1.		_		•		_			
	structures, functions and metabolism of macromolecules and								
	participation	n in molecular	recognition						
2:	Demonstra	te knowledge	and understanding	g of the princip	oles and	d basic			
	instrument	ation to separa	te and identify the	e macromolec	ules				
3:	To underst	rstand the basic knowledge of enzymatic catalysis and its regulatory							
	mechanism	l							
4:	To acquire	understanding	of designing targe	t oriented dru	d drug synthesis and their				
	biological a	ctivity evaluati	on						
Course	Outcomes (CO):							
CO1:	The studen	ts will understa	and the chemistry	of carbohydra	tes, lip	ipids, proteins			
	and amino	acids.							
CO2:	The studen	ts will understa	and the principle a	nd instrument	tation o	of basic			
			ation of biomolec						
CO3:			and the mechanisr	•	ction &	identify	y the		
			gulation of metab						
CO4:			and the synthesis o	of bioactive m	olecule	s and th	ieir		
		ctivity evaluati							
	=	CO) to Progran	nme Outcomes (P	O) Mapping (S	cale 1:	low, 2:			
	m, 3: High)								
)/PO	PO1	PO2	PO3		PO4	1		
	01	3	-	-		-			
	02	-	3	-		-			
	03	-	-	3		-			
	04	-	-	-		3			

Unit-I

Introduction to Biomolecules: Amino Acids, Proteins, carbohydrates, Lipids and their metabolism. Protein modification: Enzymatic and non enzymatic.

Unit-II

Chromatography: Gas Chromatography and High Performance Liquid Chromatography- instrumentation, detectors and applications, Gel filtration, Ion Exchange chromatography, Affinity chromatography and Electrophoresis.

Unit-III

Enzymes: An Overview of Kinetics and Regulation, Biocatalysis Metabolic Pathways and their Regulatory Mechanisms.

Unit-IV

Synthesis of target oriented drugs and their biological activity evaluation: Synthesis of different target oriented molecules and their biological activities like antioxidant, antifungal, anticarcinogen, antimicrobial etc. evaluation.

Text/Reference Book:

- 1. Lehninger Principles of Biochemistry, Albert L. Lehninger , David L. Nelson, Michael M., 2004 Cox. 4th Edition. 2004. W H Freeman & Co.
- 2. Quantitative Chemical Analysis, Daniel C. Harris, 2006, 7th edition, 2006, W.H Freeman and Company.
- 3. Biochemistry, Lubert Stryer, 1995, 4th Edition. 1995, W H Freeman & Co.

Par	per Code:	Paper: Nonli	near Dynamics		L	T/P	С		
	WM-104	Capentions			_	.,.			
Pa	aper ID:				4	-	4		
Ģ	945104								
Markir	Marking Scheme:								
	• Te	eachers Continuo	us Evaluation: 40	marks					
	• Te	erm end Theory E	xaminations: 60	marks					
Course	Objectives	: :							
1:	To unders	stand the nonline	ear dynamic syster	ns, from perio	dic to	chaotic			
2:	<u> </u>	stand the basic co	oncepts of fractal	geometry and	fracta	ls.			
3:			and dynamical sys	•	5. 2 30.	-			
4:			al modeling of dyn		١.				
			σ ,	,					
Course	Outcomes	(CO):							
CO1:	The stude	ents are able to a	cquire enough kno	owledge of dis	crete a	ınd			
	1	us dynamical syst							
CO2:		se will enhance t	he geometrical, co	mputational a	nd ana	alytical			
	thinking.								
CO3:			o understand the		-				
			o analyse them us	ing analytic an	d diag	rammati	С		
	methods.								
CO4:			nderstanding of h	ow and why a	dynan	nical syst	tem		
	becomes			-)					
		(CO) to Program	nme Outcomes (Po	ان) Mapping (S	cale 1:	low, 2:			
	m, 3: High)	201	200	500	<u> </u>				
	D/PO	PO1	PO2	PO3		PO4			
	01	1	2	1		2			
	02	3	3	3		3			
	03	3	3	3		3			
	CO4 2 2 3 2								

Unit-I

Central manifold and Normal form, attractors, 1D map, Logistic map, Poincare' maps, circle map. Bifurcations-Saddle-node, Transcritical, Hopf-bifurcation, Global bifurcations, Poincare's surface of sections, Melnikov's method for homoclinic orbits. Strange attractors & fractals dimentions. Henon map and Rossler system, Boxcounting, Hausdorff dimensions. Lyapunov exponent, Horseshoe map chaotic transitions, intermittency, crisis, quasiperiodicity, controlling & synchronization of chaos.

Unit-II

Fractals in nature, Mathematical fractals (the Koch curve and other), Mathematical chaos (the Lorenz attractor). The Cantor set, the Sierpinski triangle and carpet, Self-similar fractals, fractal dimension, modeling of biological growth, Box dimension. Random fractals: Fractal forgeries, Iteration initial value, orbit, fixed point (attracting, repelling, neither), k-cycle (attracting, repelling, neither), fixed points, Period doubling.

Unit-III

The Feigenbaum constant, similarity of the Feigenbaum diagram for different functions. Continuous dynamical systems and strange attractors, Discrete dynamical systems. Phase space. The motion of a pendulum.

Unit-IV

Mathematical modeling, Atractors of typical 2-dimensional systems. Nodes, saddles, focuses, limit cycles, Strange attractors, The Mandelbrot set, the Julia set, geometrical features of Julia and Mandelbrot sets.

The selection of programming languages and solving tools for applications will be done accordingly.

- 1. Dynamical Systems, Jurgen Jost, 2005, Springer
- 2. Dynamical Systems Stability, Controllability & Chaotic Behaviour, Werner Krabs, 2010, Springer
- 3. Fractals & Chaos, B.B. Mandelbrot, 2004, Springer
- 4. Stability of Dynamical Systems Continuous, discontinuous & Discrete Systems, Anthony N. Michel, 2008, Birkhauser Boston

Pap	er Code:	Paper:	An Introduction to	o Fuzzy	L	T/P	С	
C	WM-105	Math	ematical Program	ming				
	aper ID:				4	-	4	
	945105							
Markir	ng Scheme:							
	• Tea	chers Continuc	ous Evaluation: 40	marks				
	• Ter	m end Theory E	Examinations: 60	marks				
Course	Objectives:							
1:	To underst	and the basic co	oncepts of fuzzy se	et theory				
2:	To underst	and the basic co	oncepts of Linear I	Programming F	roble	m and		
	Duality.							
3:			of Linear Programr				У	
4:	To underst	and the applica	ation of fuzzy set t	heory in decisi	on ma	king.		
Course	Outcomes (CO):						
CO1:	The end of the course the students are able to acquire enough knowledge to							
	analyse the	set theory and	fuzzy set theory					
CO2:	This course	e will help to ur	nderstand mathem	natical program	nming and matrix			
	game theo	ry in a systemat	tic and focused wa	ıy.				
CO3:	The studen	ts will study the	e application of fu	zzy sets to dec	ision n	naking. ⁻	Γhe	
	students w	ill understand f	uzzy linear progra	mming and fuz	zy ma	trix gam	ie	
CO4:	The studen	ts will study the	e application of fu	zzy sets to dec	ision n	naking.		
	-	CO) to Program	nme Outcomes (Po	O) Mapping (Se	cale 1:	low, 2:		
Mediu	m, 3: High)				T			
CC)/PO	PO1	PO2	PO3		PO4		
C	01	2	3	3		3		
C	02	3	2	2		2		
C	03	2	2	2		3		
	04	2	2	3		2		

UNIT I:

Duality in linear programming, two person zero-sum matrix games, linear programming and matrix game equivalence, two person non-zero sum (bi-matrix) games, quadratic programming and bi-matrix game, constrained matrix games.

UNIT II:

Introduction of fuzzy sets, Basic definitions and terminologies, Fuzzy set theoretic operations, alpha-cuts and their properties, Convex fuzzy sets, Zadeh extension principle, Fuzzy relations, Similarity relation and partitioning, Triangular norms (t-norms) and triangular conorms (t-conorms). Linguistic variable and linguistic Hedges. Fuzzy if-then rule.

UNIT-III

Introduction of fuzzy numbers, Interval arithmetic, Fuzzy numbers and their representation, Arithmetic of fuzzy numbers, Special types of fuzzy numbers and their arithmetic, Ranking of fuzzy numbers.

UNIT-IV

Decision Making in fuzzy environment, Fuzzy linear programming, Quadratic programming in fuzzy environment, A two phase approach for solving fuzzy linear programming, Linear goal programming under fuzzy environment, Matrix game with fuzzy goals, Matrix game with fuzzy pay-offs, Fuzzy Bi-matrix game.

References:

Fuzzy Mathematical Programming and Fuzzy Matrix, Bector, C.R. and Chandra, S.2005, V Games, Springer

Fuzzy Sets and Logic: Theory and Applications, Klir, G.J. and Yaun, B.,2004Prentice Hall , India Fuzzy Sets Theory and its Applications, Zimmermann, H.-J.,2001, 4th edition, Springer Game Theory, G.Owen, 1995, Academic Press, , San Diego

Pap	er Code:	Pap	er: Wavelet Anal	ysis	L	T/P	С	
	WM-106							
	aper ID:				4	-	4	
	945106							
Markin	ng Scheme:	_	_					
			us Evaluation: 40					
	• Ter	m end Theory E	xaminations: 60	marks				
Course	Objectives:							
1:	This course	e will provide an	introduction to t	he theory of w	avelet	5.		
2:	This course the data	This course will develop skills to extract information, analyze and interpret the data						
3:	To establish the theory necessary to understand and use wavelets and related transformations.							
4:	Explain the	properties and	application of wa	velet transfor	m.			
		-						
Course	Outcomes (CO):						
CO1:	Students w	ill be able to cla	assify various wav	elet transform	s and v	vill get t	he	
	systematic	importance of	it.					
CO2:	The studen	nts will be able t	o describe Contin	uous Wavelet	Transf	orm (CW	/T)	
	and Discret	te Wavelet Tran	sform (DWT).					
CO3:	The studen	nts will be able t	o develop and rea	ilize computat	ionally	efficien	t	
	wavelet ba	sed algorithms.						
CO4:	The studen	nt will have a kn	owledge of brief f	eatures and st	rength	of		
	transform.							
Course	Outcomes (CO) to Program	ime Outcomes (P	O) Mapping (S	cale 1:	low, 2:		
	m, 3: High)							
)/PO	PO1	PO2	PO3		PO4		
C	:01	2	3	2		3		
C	:02	3	2	3		1		
C	:03	1	1	3		3		
C	04	2	3	3		2		

Fourier and Inverse Fourier Transforms, Continuous-Time Convolution and the Delta Function, Fourier Transform of Square Integrable Functions. Fourier Series. Basic Convergence Theory and Poisson's Summation Formula.

Unit-II

The Gabor Transform. Basic Properties of Gabor Transforms. The Integral Wavelet Transforms, Dyadic Wavelets and Inversions.

Unit-III

Basic Properties of Wavelet Transforms. The Discrete Wavelet Transforms. Orthonormal Wavelets, Wavelet frames & Multiband, Curvelets. Definition of Multiresolution Analysis and Examples.

Unit-IV

Properties Scaling Functions and Orthonormal Wavelet Bases. Construction of Orthonormal Wavelets. Daubechies' Wavelets and Algorithms.

The selection of programming languages and solving tools for applications will be done accordingly.

References:

- 1. The Fourier Transform & Its Applications, Ronald Bracewell, 2000, Mc Graw Hill
- 2.An Introduction to Wavelet, Charles Chui, 1992, Academic Press
- 3. Wavelets made easy, Yves Nievergelt, 1999, Springer-Verlag
- 4.Essential Wavelets for Statistical Applications & Data Analysis, Todd Ogden, 1996, Birkhaus Boston

	er Code:	Pa	per: Space Dynam	ics	L	T/P	С
	WM-107						
	per ID:				4	-	4
	945107						
iviarkin	g Scheme:						
	• Te	achers Continuc	ous Evaluation: 40	marks			
	 Te 	rm end Theory E	examinations: 60	marks			
Course	Objectives	•					
1: To develop the mathematical skill of using various mathematical methods						S	
2:	To give introduction about different co-ordinate systems.						
3:	To give introduction about relativity theory.						
4:	To introdu	ice the change o	f co-ordinate syste	em.			
Course	Outcomes	(CO):					
CO1:	Students	will learn Kepler'	s law.				
CO2:	Students	will learn about a	angular momentui	n.			
CO3:	Students	will be familiar to	compute surface	s of zero relat	ive vel	ocity.	
CO4:	Students	will learn to com	pute parabolic an	d hyperbolic o	rbits.	•	
Course			nme Outcomes (Po	• • •		low. 2:	
	m, 3: High)	. , -5	•	, ,,,		,	
	/PO	PO1	PO2	PO3		PO4	
	01	3	2	1		2	
	02	3	2	1		2	
_	03	3	2	1		2	
С	04	3	2	1		2	

Unit I:

Formulation of the Two Body Problem. Integrals of area, angular momentum and energy. Equation of the relative orbit and its solution. Kepler's equation and its solution.

Unit II

Heliocentric and Geocentric Co-ordinates, Parabolic and Hyperbolic orbits, Melnikov's Integral, Orbit computation by Laplace and Gauss methods. Lagrange's solution for the motion of three bodies.

Unit III:

Restricted three body problem. Surfaces of zero relative velocity. Double points. Stability of straight line and equilateral triangle solutions. The ten integrals of motion of the n-body problem.

Unit IV:

Transfer of origin to one of the particles. The perturbing function. Virial theorem. Numerical integration by Cowell's and Encke's methods.

The selection of programming languages and solving tools for applications will be done accordingly.

Suggested Readings and References

- 1. Theory of Orbits by V. Szebhely, Academic Press, 1967
- 2. Theory of Orbits by Boccaletti, Dina etc., Springer, 2004
- 3. Theory of Orbit Determination by Andrea Milani, Cambridge University Press, 2009.
- 4. Theory of satellite orbits in an atmosphere by Desmond King-Hele, Butterworths edition, in English, 1987

Paper Code: CWM-108		Paper: Lie Gr	oups and Homogene	ous spaces	L	T/P	С
	Paper ID:				4	_	4
	945108				•		•
Markir	ng Scheme:	,					
•	Teachers Co	ontinuous Evaluation	n: 40 marks				
•	Term end T	heory Examinations	: 60 marks				
Course	Objectives:	•					
1:	To give an	introductory course	on the theory of Lie	groups			
2:	To give bas	sic concepts about R	epresentation theory	<u>. </u>			
3:	To give an	introductory course	on the theory of hor	nogeneous spaces	5.		
4:	To introdu	ce basic concepts ab	out symmetric space	25			
		·					
Course	Outcomes (CO):					
CO1:	Students w	vill learn basic conce	pts of Lie groups				
CO2:	Students w	vill understand eleme	entary concepts abou	ut Representation	theory		
CO3:	Students w	vill be familiar with H	lomogenous spaces a	and with computa	tion of	bi-invari	ant
	metrics						
CO4:	Students w	vill learn basic conce	pts about symmetric	spaces and with	compu	tation of	G-
	invariant m	netrics					
Course	Outcomes (CO) to Programme	Outcomes (PO) Map	ping (Scale 1: low	, 2: Me	dium, 3:	High)
CO/PO PO1 PO2 PO3							
	CO1	3	2	1		2	
	CO2	3	2	1		2	
	CO3	3	2	1		2	
	CO4	3	2	1		2	_

Lie groups, Example of Lie groups, Smooth manifolds: A review, tangent space of a Lie group- Lie algebras, One parameter subgroups, the Campbell-Baker-Hausdorff series, Lie theorems.

Unit-II

Representation theory: elementary concepts, Adjoint representation, Killing form, tori, Classification of compact and connected Lie groups, Complex semisimple Lie algebras.

Unit-III

Left invariant and bi-invariant metrics, Geometrical aspect of a compact Lie group, Homogeneous spaces, Coset manifolds, Reductive homogeneous spaces, Isotropy representation.

Unit-IV

G-invariant metrics, Riemannian connection, Curvature, Symmetric spaces, structure of symmetric space, Geometry of symmetric space, duality, Hypersurfaces in metric Lie groups.

Text books/Reference books:

- 1. Lie Groups: An Introduction through Linear Groups, Wulf Rossmann, Oxford Graduate Texts in Mathematics, Oxford University Press Inc., New York.
- 2. Naive Lie Theory, John Stillwell, Springer, 2008.
- 3. Matrix Groups: An Introduction to Lie Group Theory, Andrew Baker, Springer, 2003.
- 4. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Brian C. Hall, Springer, 2004.
- 5. Lie Groups: An Approach through Invariants and Representations, Claudio Procesi, Springer, 2006.
- 6. Lie Groups beyond an Introduction, Anthony W. Knapp, Birkhauser, 2002.
- 7. Differential Geometry, Lie Groups, and Symmetric Spaces, Sigurdur Helgason, American Mathematical Society, 2001.

Pap	er Code:	Paper: Ma	athematical Mode	elling and	L	T/P	С
CWM-109			Ecology	g		.,.	
Pa	per ID:				4	-	4
g	945109						
Markin	g Scheme:						
	• Te	achers Continuo	us Evaluation: 40	marks			
Term end Theory Examinations: 60 marks							
Course	Objectives	•					
1:	To develop the Mathematical skill of using various mathematical methods.						
2:	Enable students understand how mathematical models are formulated, solved, and interpreted.						
3:	Make students appreciate the power and limitations of mathematics in solving practical real-life problems						
4:			world of mathemes, and the limitat		ng – tr	ne art, t	ne
Course	Outcomes	(CO):					
CO1:	T	<u> </u>	ntific understandi	ng			
CO2:	Students v	will be able to do	sensitivity analys	is for the char	nges in	a syste	m.
CO3:	Students v	will able to take	decisions includin	g tactical and	strateg	ic decis	ions.
CO4:	Assess the	•	uracy of their app	roach relative	to wha	at the	
Course	L '		nme Outcomes (Po	O) Mapping (S	cale 1:	low. 2:	
	m, 3: High)	(,		-,		,	
-)/PO	PO1	PO2	PO3		PO4	1
С	01	2	3	3		2	
С	:02	1	2	1		3	
С	:03	2	2	2		3	
	:04	3	1	3		2	

Deterministic and stochastic models, tools, techniques, modeling approaches. Models of single and interacting populations, prey-predator, competition, chemical state, AIDS/HIV/ SARS. Epidemic and genetic models. Model for dialysis, Model for brain tumour.

Unit-II

Single species models, Exponential, logistic, Gompertz growth, Harvest model, Discrete-time and Delay model, Interacting population model, Dynamics of exploited populations, Spatially structured models.

Unit-III

Models for traffic flow, computer data communications, Stock Market, spatio-temporal pattern. Modeling of Physical and Engineering systems -Heating and cooling systems, Henon-Heiles systems, Hydro power plant, fuel injection systems and ankle joint.

Unit-IV

Age-structured models, Leslie matrix, Randomly fluctuating Environment, prey-predator and multi-species models in stochastic environment.

The selection of programming languages and solving tools for applications will be done accordingly.

Recommended Books:

- 1. Mathematical Modelling by J.N. Kapur, New Age International, 1998
- 2. Mathematical Biology by J.D. Murray, Springer, 2003
- 3. Elements of Mathematical Ecology by Mark Kot, Cambridge University Press, 2001
- 4. Mathematical Models & Methods for Real World Systems by Frauti, Siddiqui, Taylor Francis Group (CRC), 2005

Pap	er Code:	Paper: Sto	chastic Processes	, Queuing	L	T/P	С	
C۱	VM-110	Т	heory & Reliabilit	У				
	aper ID:				4	-	4	
	945110							
Markir	ng Scheme:							
	• Te	achers Continuc	ous Evaluation: 40	marks				
	• Te	rm end Theory E	Examinations: 60	marks				
Course	Objectives	•						
1: To develop the mathematical skill of using various mathe					natical	method	ls	
2:	To give int	To give introduction about Random walk.						
3:	To give int	To give introduction about Poisson process.						
4:	To introdu	To introduce the basic idea of Queuing theory						
Course	Outcomes	(CO):						
CO1:	Students v	vill learn genera	lized queuing mod	dels.				
CO2:	Students v	will learn about I	Markov process.					
CO3:	Students v	vill be familiar to	o discrete time qu	euesy.				
CO4:	Students v	vill learn Reliabi	lity theory.					
Course	Outcomes	(CO) to Program	nme Outcomes (Po	O) Mapping (S	cale 1:	low, 2:		
Mediu	m, 3: High)							
CC)/PO	PO1	PO2	PO3		PO4		
CO1		2	2	3		2		
C	02	1	3	2		2		
C	03	3	3	3		2		
(:04	3	2	3		2		

Unit I:

Markov chains with finite and countable state space, classification of states, limiting behavior of n-step transition probabilities, stationary distribution, branching processes, Random walk, Gambler's ruin. Markov processes in continuous time, Poisson processes, birth and death processes, Wiener process.

Unit II

General Concept, Generalized Queuing model, M/M/1, M/M/1/N and M/M/s Queue, Bulk Queue, Network of Monrovian Queueing System, Non Markovian Queueing Models, M/G/1, GI/M/1 Queue.

Unit III:

General concept of discrete time queues, Applications of Queuing theory. Introduction to Reliability Theory, System Reliability, Repairable and Non Repairable Systems.

Unit IV:

Markov Modeling in Reliability, Life testing using the exponential and Weibull models, Shock Models and Wear Process, Concept of Redundancy.

The selection of programming languages and solving tools for applications will be done accordingly.

Suggested Readings and References

- 1. Stochastic Processes by Sheldon M. Ross, Wiley India Pvt. Ltd., 1995
- 2. Essentials of Stochastic Processes by Rick Durrett, Springer, 1999
- 3. Mathematical Methods in Queuing Theory by Kalashnikov, Kluwer Academic Publisher, 2010
- 4. Reliability Theory and Practice by Igor Bazovsky, Dover Publication, 2004

Paper Code:		Paper: An	Introduction t	0	L	T/P	С
CW	M-111	Financial Ma	thematics				
	er ID:				4	-	4
	5111						
Marking	Scheme:						
•	Tea	chers Continuo	us Evaluation: 40	marks			
•	 Term end Theory Examinations: 60 marks 						
Course Objectives:							
1: Introduce the concepts of financial mathematics.							
2:	Introduce students to the use of mathematical models for financial product						ucts
3:	Develop student abilities to create, derive, and apply mathematical models						els
4:	The course will introduce the concept of risk and return						
Course C	Outcomes (CO):					
CO1:	The knowle	edge of risk and	return will be into	egrated in opti	mal de	cision	
	making						
CO2:	Develop co	mputational sl	kills in students				
CO3:	Develop in	students the a	bility to apply ma	thematics to re	eal-wo	rld	
	problems						
CO4:	Promote a	nalytical and cr	itical thinking.				
Course C	Outcomes (CO) to Program	nme Outcomes (Po	O) Mapping (So	cale 1:	low, 2:	
Medium	, 3: High)						
CO/	РО	PO1	PO2	PO3		PO4	
CO	1	3	3	2		3	
CO	2	2	3	2		2	
CO	3	3	3	3		3	

3

3

2

CO4

3

Basic Terminology: Financial markets, Interest computation, value, growth and discount factors, derivative products.

Unit-II

Derivative Pricing: Basics of option theory, single and multi-period binomial pricing models, Cox-Ross-Rubinstein (CRR) model, volatility, Black-Scholes formula for option pricing as a limit of CRR model, Greeks and hedging.

Unit-III

Portfolio Optimization: Mean-Variance portfolio theory: Markowitz model, Capital Asset Pricing Model (CAPM), Factor models.

Unit-IV

Interest Rates and Interest Rate Derivatives, Binomial Tree Models.

Suggested Books and References

- 1. D. G. Luenberger, Investment Science, Oxford University Press, 1999 (new edn. 2013).
- 2. M. Capińsky and T. Zastawniak, Mathematics for Finance: An Introduction to Financial Engineering, Springer, 2004 (new edn, 2011).
- 3. J C Hull, Options, Futures and other Derivatives, Prentice Hall, 8th edn, (2011).
- 4. S. Chandra, S. Dharmaraja, A. Mehra and R. Khemchandani, Financial Mathematics: An Introdu Publishing House, 2013.

Pap	er Code:	Paper:	Differentiable Ma	nifolds	L	L T/P			
C'	WM-112	•							
Pa	per ID:				4	-	4		
	945112								
Markir	ig Scheme:								
	• Tea	chers Continuc	us Evaluation: 40	marks					
	• Ter	m end Theory E	xaminations: 60	marks					
Course	Objectives:								
1:	To give bas	ic concepts of	differentiable mar	nifolds					
2:	To give intr	oduction abou	t calculus on differ	entiable mani	folds				
3:	To give intr	oduction abou	t connections, Rie	mannian metr	ics and	curvatu	ires		
	on differen	tiable manifold	S						
4:	To introduc	ce variations of	arc length and exp	oonential map	s, Jaco	bi vecto	r		
	field								
Course	Outcomes (CO):							
CO1:	Students w	ill learn basic c	oncepts of manifo	lds					
CO2:	Students w	ill understand t	o apply calculus o	n manifolds					
CO3:	Students w	ill be familiar to	compute Riemar	nnian connecti	ons an	d curvat	ures		
CO4:	Students w	ill learn to com	pute first and sec	ond variation	of arc l	length,			
	exponentia	I maps and its	applications on sm	ooth manifold	ds				
Course	Outcomes (CO) to Progran	nme Outcomes (Po	O) Mapping (S	cale 1:	low, 2:			
Mediu	m, 3: High)								
СС	/PO	PO1	PO2	PO3		PO4			
C	01	3	2	1		2			
C	:02	3	2	1		2			
C	:03	3	2	1		2			
C	:04	3	2	1		2			

Unit I:

<u>Introduction</u>: Topological and differentiable manifold with examples, product manifolds, vector field and tangent space, Lie brackets, differential map and Jacobians, immersions and imbeddings, differential forms and cotangent space, pull back map, geodesic and parallel transportation, covariant derivative and coefficients of affine connections.

Unit II

<u>Calculus on Manifolds</u>: Exterior derivative, Lie derivative, gradient, curl, divergence, Laplacian, Hessian on manifolds, interior product, orientations and volume element, integration in Rⁿ and its generalisation to manifolds, Stoke's theorem

Unit III:

<u>Riemannian Connections and Curvatures</u>: Levi-Civita connections, torsions and symmetry, Riemannian metrics and Riemannian connections, Riemannian curvature, sectional curvature, Ricci curvature, scalar curvature, connection forms, structural equations, curvature forms.

Unit IV:

<u>Variations of Arc Length</u>: First and second variation of arc length, Bonnet Theorem, exponential map, Jacobi vector fields and conjugate points, Submanifolds with examples, tangent space and normal space.

Suggested Readings and References

- 1. Riemannian Geometry, M. P. Do Carmo, 1992, Birkhauser Boston
- 2. The Geometry of Physics, Theodore Frankel, 2011, Cambridge University press
- 3. Introduction to Smooth manifolds, J.M.Lee, 2013, Springer-Verlag New York

: